Optimisation of Concentrator in the Solar Photonic Optoelectronic Transformer: Comparison of Geometrical Performance and Cost of Implementation
نویسندگان
چکیده
The Solar Photonic Optoelectronic Transformer (SPOT) is one of the components of the SolarBrane, a Building Integrated Photovoltaic (BIPV) system developed by SolarEmpower Ltd. The SPOT employs 2-D linear dielectric totally internally reflecting concentrator (DTIRC) to increase the collection efficiency of the sun’s rays and reduce the amount of photovoltaic (PV) material used. In this paper, an optimised DTIRC design for the SPOT, based on the maximum concentration method (MCM), is discussed. Next, the geometrical properties of the optimised DTIRC design are explained and compared to a DTIRC based on the phase conserving method (PCM). A cost analysis of implementing the MCM is also presented. The results obtained from simulations in MATLAB show that the MCM offers higher geometrical concentration gains and at the cost of increasing the concentrator size. The new optimised concentrator offers a lower cost of implementation, shorter payback period and an even higher annual return as compared to the existing design.
منابع مشابه
Optimised Concentrator for the Solar Photonic Optoelectronic Transformer: First Optimisation Stage
Collecting and storing solar energy will be a key part of efficient renewable technologies for buildings of the future, particularly in the Middle East. This paper presents the topic of improved properties of optical concentrators to achieve increased solar energy gain. The Solar Photonic Optoelectronic Transformer (SPOT) system is one of the components of the SolarBrane, a Building Integrated ...
متن کاملPlasmonic Solar Cells, a New Way to Enhance Energy Conversion Efficiency: Analysis and Modeling of Effect of Metal Geometry
In this article, the effect of plasmonic properties of metal nanoparticles with different shapes, and moreover, their plasmonic-photonic interaction, on solar cell performance were investigated and simulated. Because of low conversion efficiency and then high cost of solar cells, it is difficult to commercialize and replace them with conventional energy resources. But in recent years, the plasm...
متن کاملDesign and Analysis of a Novel Hexagonal Shaped Channel Drop Filter Based on Two-Dimensional Photonic Crystals
In this paper a new optical channel drop filter (CDF) based on two dimensional (2-D) photonic crystals (PhC) with hexagonal shaped structure is proposed and numerically demonstrated by using the finite-difference-time-domain (FDTD) and plane-wave-expansion (PWE) techniques. Photonic crystals (PhCs) are artificial dielectric nanostructure materials in which a periodic modulation of the material ...
متن کاملPotentials of Solar Energy Use in Upstream Petroleum Industry
Extraction and processing of oil products consume 10% of the total energy produced by fossil resource. to prevent operational problems in downstream units Oil extracted from oil fields will be sent to the desalting plant for desalination and dehydration. One of the most important steps that have a vital role in this unit is pre-heating by heaters which use natural gas produced with crude oil at...
متن کاملDesign and realization of transparent solar modules based on luminescent solar concentrators integrating nanostructured photonic crystals
Herein, we present a prototype of a photovoltaic module that combines a luminescent solar concentrator integrating one-dimensional photonic crystals and in-plane CuInGaSe2 (CIGS) solar cells. Highly uniform and wide-area nanostructured multilayers with photonic crystal properties were deposited by a cost-efficient and scalable liquid processing amenable to large-scale fabrication. Their role is...
متن کامل